منابع مشابه
Thomson’s Theorem on Mean Square Polynomial Approximation
In 1991, J. E. Thomson determined completely the structure of H2(μ), the closed subspace of L2(μ) that is spanned by the polynomials, whenever μ is a compactly supported measure in the complex plane. As a consequence he was able to show that if H2(μ) = L2(μ), then every function f ∈ H2(μ) admits an analytic extension to a fixed open set Ω, thereby confirming in this context a phenomenon noted e...
متن کاملMean square convergence analysis for kernel least mean square algorithm
In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...
متن کاملPerfect spline approximation
Our study of perfect spline approximation reveals: (i) it is closely related to Σ∆ modulation used in one-bit quantization of bandlimited signals. In fact, they share the same recursive formulae, although in different contexts; (ii) the best rate of approximation by perfect splines of order r with equidistant knots of mesh size h is hr−1. This rate is optimal in the sense that a function can be...
متن کاملBest Quadratic Spline Approximation
We present a method for hierarchical data approximation using quadratic simplicial elements for domain decomposition and field approximation. Higher-order simplicial elements can approximate data better than linear elements. Thus, fewer quadratic elements are required to achieve similar approximation quality. We use quadratic basis functions and compute best quadratic simplicial spline approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1974
ISSN: 0022-247X
DOI: 10.1016/0022-247x(74)90119-x